

Remote sensing for the reduction of traffic emissions: H2020 CARES project

Ake Sjodin, IVL Swedish Environmental Research Institute

Kaylin Lee, International Council on Clean Transportation

CARES – a H2020 InCo flagship project bringing together worldwide RES/RDE expertise

CARES – a H2020 InCo flagship project bringing together worldwide RES/RDE expertise

INNOVHUB STAZIONI SPERIMENTALI PER L'INDUSTRIA

Commercial remote sensing service providers:

CARES overall objectives

"... reduce the hurdles for applications of remote emission sensing (RES) to make it a widespread means of both monitoring and enforcement of vehicle emissions."

Conventional/commercial remote emission sensing

CARES is further developing RES techniques

Develop and demonstrate remote emission sensing hard- and software to:

- Improve the accuracy of measurements of **particulate matter**;
- Improve the detection of **high-emitting vehicles**;
- Lower costs of remote emission sensing measurements;
- Facilitate use by unskilled personnel to achieve a broader deployment potential;
- Support local air quality plans;
- Establish a proper data infrastructure built around vehicle registration databases, traffic management measures and air quality monitoring systems.

Remote sensing testing in Milan

- Testing period: Fall 2021 (Sep Oct)
- HEAT's EDAR remote sensing systems
 - Deployed in Via Cilea, Via Madre Cabrini (with similar driving conditions)
 - > 35,000 measurements
- Point sampling
 - Via Madre Cabrini, Via Bazzoni
 - Enable real-world measurements of particulate number (PN) and black carbon
- Concurrent portable emissions measurement system (PEMS) testing on certain vehicles
- Air quality monitoring instruments and advanced sensors
- Ambient ammonia concentration and resuspension particle measurements

Remote sensing testing in Milan

- Testing period: Fall 2021 (Sep Oct)
- HEAT's EDAR remote sensing systems
 - Deployed in Via Cilea, Via Madre Cabrini (with similar driving conditions)
 - > 35,000 measurements
- Point sampling
 - Via Madre Cabrini, Via Bazzoni
 - Enable real-world measurements of particulate number (PN) and black carbon
- Concurrent portable emissions measurement system (PEMS) testing on certain vehicles
- Air quality monitoring instruments and advanced sensors
- Ambient ammonia concentration and resuspension particle measurements

Remote sensing testing in Milan

- Testing period: Fall 2021 (Sep Oct)
- HEAT's EDAR remote sensing systems
 - Deployed in Via Cilea, Via Madre Cabrini (with similar driving conditions)
 - > 35,000 measurements
- Point sampling
 - Via Madre Cabrini, Via Bazzoni
 - Enable real-world measurements of particulate number (PN) and black carbon
- Concurrent portable emissions measurement system (PEMS) testing on certain vehicles
- Air quality monitoring instruments and advanced sensors
- Ambient ammonia concentration and resuspension particle measurements

Airborne concentrations & meteo measurements

Milan's RS measurements from commercial systems

- Passenger car most commonly found
- Significant shares of LPG/CNG vehicles relative to other cities
- Lower share of valid emission measurements of scooters and motorcycles due to driving pattern and small plumes

Milan's passenger car emissions

- Fair share of old diesel vehicles (< Euro 6), whose NO_x emissions
 - Multiple times higher than emissions from petrol, LPG, or CNG
 - Do not improve significantly until Euro 6d-TEMP (manufactured after 2019)

Presence of LPG & CNG vehicles

CNG

N/A

Whose NO_x emissions higher than petrol
counterparts

Responsible for high CO emissions (LPG) and ligh HC and CH₄ emissions (CNG)

n sampling results point to the same requer for place carbon and NO_x

Milan's passenger car emissions

- Fair share of old diesel vehicles (< Euro 6), whose NO_x emissions
 - Multiple times higher than emissions from petrol, LPG, or CNG
 - Do not improve significantly until Euro 6d-TENAD (manufactured after 2019)

G vehicles ions higher than petrol

gh CO emissions (LPG) CH₄ emissions (CNG) Sults point to the same carbon and NO_x

Impact of Milan's low-emission zone (LEZ)

- Restrictions in Area B (Via Cilea)
 - 0.6% vehicles (mostly diesel) detected were not meeting LEZ requirements
- Restrictions in Area C (Via Madre Cabrini)
 - Stricter restrictions of diesel vehicles
 - 2.6% vehicles (mostly diesel) detected were not meeting LEZ requirements
 - 77% Euro 4 equipped with diesel particulate filters
- Milan could benefit from:
 - Further restrictions of successive standards (e.g., diesel Euro 6) or other fuels (e.g., LPG/CNG)
 - Expanding hours and days of low emission zone

Impact of Milan's low-emission zone (LEZ)

- Restrictions in Area B (Via Cilea)
 - 0.6% vehicles (mostly diesel) detected were not meeting LEZ requirements
- Restrictions in Area C (Via Madre Cabrini)
 - Stricter restrictions of diesel vehicles
 - 2.6% vehicles (mostly diesel) detected were not meeting LEZ requirements
 - 77% Euro 4 equipped with diesel particulate filters
- Milan could benefit from:

Yes

No

- Further restrictions of successive standards (e.g., diesel Euro 6) or other fuels (e.g., LPG/CNG)
- Expanding hours and days of low emission zone

Volatile Organic Compound (VOC) point sampling & mobile measurements

- Mobile laboratory equipped with a Selectedlon Flow-Tube Mass Spectrometer (SIFT-MS) for sampling of speciated VOCs and other trace gases
- Motorcycles/mopeds and petrol/oil (2 stroke engines) fuel types as important VOC sources in Milan
 - Highest average VOC/CO2 ratios
 - Motorcycles/mopeds not currently regulated by many LEZs
 - LPG and CNG increasingly popular as we try to reduce our carbon emissions
- Mobile measurements to be followed

Summary and conclusions

- Various remote sensing techniques that complement each other were used to collect realworld emissions measurements of the Milan fleet.
- Milan is characterized by relatively high activity of vehicles with alternative fuels (LPG and CNG) and motorcycles and mopeds.
- Diesel vehicles manufactured between 2006 and 2014 (Euro 4-5) contribute a large share of NO_x emissions. The next step of the LEZ would address emissions from these vehicles.
- Vehicles run on LPG and CNG show high real-world emissions of NO_X, CO, HC, and black carbon contrary to conventional beliefs.
- Real-world emissions data can be used to better inform policies to reduce emissions in the city.

Thank you for your attention!

For further information:

- Check the website: https://cares-project.eu
- Download the project brochure (Also available in Italian)
- E-mail contact: ake.sjodin@ivl.se
- Follow us on social media:

@cares_project

https://www.linkedin.com/company/ city-air-remote-emission-sensing-cares

City Air Remote Emission Sensing

Making remote sensing an effective tool for monitoring pollutant emissions and improving city air quality

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No 814966

